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Summary

In the classic ‘‘What the frog’s eye tells the frog’s

brain,’’ Lettvin and colleagues [1] showed that differ-
ent types of retinal ganglion cell send specific kinds

of information. For example, one type responds best
to a dark, convex form moving centripetally (a fly).

Here we consider a complementary question: how
much information does the retina send and how is

it apportioned among different cell types? Recording
from guinea pig retina on a multi-electrode array and

presenting various types of motion in natural scenes,

we measured information rates for seven types of
ganglion cell. Mean rates varied across cell types

(6–13 bits $ s21) more than across stimuli. Sluggish
cells transmitted information at lower rates than brisk

cells, but because of trade-offs between noise and
temporal correlation, all types had the same coding

efficiency. Calculating the proportions of each cell
type from receptive field size and coverage factor, we

conclude (assuming independence) that the approxi-
mately 105 ganglion cells transmit on the order of

875,000 bits $ s21. Because sluggish cells are equally
efficient but more numerous, they account for most

of the information. With approximately 106 ganglion
cells, the human retina would transmit data at roughly

the rate of an Ethernet connection.

Results

Natural Stimuli Differed from White Noise
The information rate for a ganglion cell responding to
white noise is proportional to the information rate of a
Poisson firing neuron with the same mean spike rate
[2]. However, white noise is unsuited for calculating nat-
ural information rates because it contains all frequencies
equally, whereas natural images contain spatio-tempo-
ral frequencies that are highly skewed (Figure 1) [3–6].
Therefore, we presented the guinea pig retina with video
images of natural scenes to mimic the main categories
of biological motion: saccades, optic flow, object
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motion, and fixational eye movement. For these stimuli,
the intensity distributions and the spatial and temporal
spectra differed strikingly from white noise (Figure 1).
Instead, like the distributions typical of natural images,
they were skewed toward low intensities and low spatial
and temporal frequencies.

Responses Depended on Cell Type
Various cell types were recorded simultaneously on a
multi-electrode array [7] or singly with a loose patch elec-
trode [2] and identified by their characteristic reverse
correlograms and autocorrelograms (see Figure S1 in
the Supplemental Data available with this article online)
[8–10]. Comparing responses to a given stimulus across
seven cell types, we found a characteristic response
pattern for each type (Figure 2). For example, in response
to the saccade stimulus, brisk-transient cells (both ON
and OFF) fired spike bursts that peaked high in the
PSTH (>300 spikes $ s21), whereas brisk-sustained cells
(both ON and OFF) peaked lower (w150 spikes $ s21)
and fired for longer periods (Figure 2). ON-OFF direc-
tion-selective cells fired with low jitter in spike timing
across trials, whereas local-edge cells fired with consid-
erable jitter (Figure 2 saccade, standard deviation of
spike times across trials was 9 ms versus 43 ms).

On the other hand, while comparing responses across
four different stimuli, we found that characteristic re-
sponse patterns were stable (Figure 2). For example,
brisk-transient peaks always exceeded 200 spikes $ s21

and ON-OFF direction-selective cells always fired with
low jitter in spike timing (Figure 2; 9–17 ms), whereas lo-
cal-edge cells always fired with considerable jitter (Fig-
ure 2; 18–68 ms). We quantified these observations by
comparing five basic statistics of the spike train: peak
rate, mean rate, temporal jitter (standard deviation of
spike timing across repeats [2]), burst fraction (fraction
of spikes that occurred <6 ms apart), and firing fraction
(fraction of time bins during which a cell fired at R5% of
its peak rate). Spike statistics were constant across
stimuli, and this was true for all cell types. Each statistic
depended on cell type (two-way analysis of variance,
Bonferroni/Dunn post-hoc test, p < 0.05), whereas spike
statistics generally did not depend on the stimulus (p >
0.05). The only exception was that the local-edge cell
type fired with significantly greater spike-time jitter to
the object motion stimulus than to the fixational stimulus
(Figure S2; p < 0.05).

Because spike statistics differed between cell types
more than between stimuli, the rank ordering of cells
was consistent across stimuli and the key response
features of each cell type were preserved (Figure S2).
Thus, brisk-transient cells always had the largest burst
fraction and highest peak rates; brisk-sustained cells
usually had the largest firing fraction, and direction-
selective cells usually had the smallest firing fraction.
Direction-selective and local-edge cells always fired at
about half the mean rate of brisk cells; local-edge cells
usually had the greatest timing jitter. When pooled
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across stimuli and compared with a one-way ANOVA,
brisk-transient cells had the highest burst fractions and
fired at the highest peak rates (Table 1; p < 0.05), and
ON-OFF direction-selective cells fired at higher peak
rates than local-edge cells (p < 0.05). Brisk-sustained
cells had higher firing fractions than direction-selective
cells (p < 0.05). Brisk-transient cells fired at the highest
mean rates (p < 0.05). Local-edge responses to sac-
cades, optic flow, and object motion showed the highest
timing jitter (p < 0.05). No other significant differences
were found in the responses of the different cell types.
Because ON and OFF cells of the same class (brisk-

Figure 1. Statistics of Natural Stimuli Differ from Those of White

Noise

Natural movies mimicked saccades, optic flow, and object motion

[10]. To mimic fixational eye movements, we used Psychophysics

toolbox [40, 41] to jitter van Hateren’s images (http://hlab.phys.

rug.nl/archive.html) randomly over the retina, with step size and

velocity matched to that measured for the rabbit [9, 42]. When pro-

jected onto the retina, stimuli filled approximately 4 mm 3 4 mm with

mean luminance corresponding to photopic vision. The photon ab-

sorption rates were 2900 and 440 photons $ s21 for the M and S

cones, respectively. Each movie lasted 20–27 s and was repeated

60–100 times. Intensity distributions and amplitude spectra were

obtained after averaging over all frames.

(A) Intensities in white noise (gray lines) are equally represented, but

in natural scenes (black lines), lower intensities are more likely.

(B) Spatial frequencies in white noise have equal amplitude, but in

natural scenes, amplitude declines with frequency (slope w 21.5).

Spectra have been separated (shifted up) for clarity.

(C) Temporal frequencies in white noise have equal amplitude, but in

natural motion, amplitude declines with frequency (slope w 21.0).

Spectra have been shifted up for clarity.
transient, brisk-sustained) were similar (Table 1), they
were pooled in subsequent analyses.

Information Rate Correlated with Mean Spike Rate

The information rate was moderately correlated with
peak spike rate and firing fraction (respectively, r = 0.57
and 0.48) but strongly correlated with mean spike rate
(r = 0.90; Figure 3A). Information rate was negatively cor-
related with timing jitter (r = 20.29) because jitter in-
creases noise entropy. Thus, cell types with the highest
mean spike rates and lowest jitter (brisk-transient) sent
the most bits $ s21 (Figure S2). Information rate de-
pended on cell type (p < 0.05) and not on the stimulus
(p > 0.05). Information rate was constant across stimuli,
and this was true for all cell types (Figure S2; p > 0.05).
Averaged across stimuli, the information rates of brisk-
transient cells were highest (Table S1; p < 0.05).

Information per Spike Decreased with
Mean Spike Rate

The average information per spike (information rate di-
vided by mean spike rate) was highest for the lowest
spike rates (w3.5 bits $ spike-1 vs. w1 bit $ spike-1 for
the highest rate (Figure 3D)). This agrees with the infor-
mation-theory principle that rarer events carry more
information per event [11–13]. Accordingly, cells with
lower mean spike rates (typically ON direction-selective
cells, ON-OFF direction-selective cells, and local-edge
cells) sent approximately 20% more bits $ spike21 than
the brisk types (Table S1).

All Cell Types Filled Their Coding

Capacities Similarly
Cells with higher spike rates have a greater capacity to
encode information, but some cells might make better
use of their capacity than others, i.e., might show greater
coding efficiency. Coding capacity is the maximum total
entropy rate possible at the mean spike rate [2, 11, 14].
It is achieved when spikes are independent (have no
temporal correlations) and when the spike train is per-
fectly reproducible (there is no noise entropy). Coding
capacity, C, is calculated as

CðR;DtÞ=2RDtlog2ðRDtÞ2ð12RDtÞlog2ð12RDtÞ
Dt

bits$s21

(1)

where R = mean spike rate and Dt = 5 ms, i.e., the time
bin used to calculate information. Coding efficiency is
a cell’s actual information rate divided by its coding
capacity.
Coding capacity differed across types—with means
ranging from w20 bits $ s21 for direction-selective and
local-edge cells to w40 bits $ s21 for brisk cells. How-
ever, all types showed the same coding efficiencies
(w30% of capacity; Figure 3A and Table S1; p < 0.05).
Coding efficiency was also the same across stimuli,
and this was true for all cell types (Figure S2; p > 0.05).

What Sets Coding Efficiency?

Total entropy averaged across cells and stimuli filled
91% of capacity (Figure 3B). This implied that 9% was
lost to temporal correlations. The fractional loss de-
pended on cell type: brisk-transient cells lost 15%,
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Figure 2. Four Types of Natural Motion Evoked Similar Spike Patterns within a Cell Type But Different Patterns Across Types

(A) All five cells were recorded simultaneously (multi-electrode array). Each cell responded similarly to all three motion stimuli. The brisk-transient

and ON-OFF direction-selective (DS) cells responded with high peak rates and low firing fractions, whereas the brisk-sustained, ON DS, and

local-edge cells responded with lower peak rates and higher firing fractions. The brisk-transient and ON-OFF DS responses showed the lowest

spike-time jitter across trials, whereas the brisk-sustained and local-edge responses showed the highest. As expected for sluggish types, mean

firing rates were about half that of the brisk cell types [2].

(B) Cells were recorded singly (loose-patch). Spike patterns to simulated fixational eye movements resembled those of the other types of motion.
whereas local-edge cells lost only 4% (Table S1; p <
0.05). Noise entropy averaged across cells and stimuli
filled 65% of capacity (Figure 3C). This implies that
65% of capacity was lost to spike train noise. Again,
the fractional loss depended on cell type; brisk-transient
cells lost 56%, whereas local-edge cells lost 69% (p <
0.05). There were no other significant differences across
cell types, nor did losses depend on the stimulus (p >
0.05). Most cells lost more capacity to spike train noise
than to temporal correlations between spikes.

Cell types differing in temporal correlations and noise
could transmit with equal efficiency if larger losses due
to correlations were offset by smaller losses to noise.
This is precisely what we found (Figure 3E; Table S1).
For brisk-transient cells, total entropy filled a small frac-
tion of capacity because spikes were strongly corre-
lated, whereas noise entropy was reduced. Conversely,
for local-edge cells, total entropy filled a larger fraction
of capacity because spikes were weakly correlated,
whereas noise entropy was elevated. Thus, coding effi-
ciency was conserved across cell types because losses
due to temporal correlations were finely balanced
against losses due to noise.

This balance would be achieved if spike bursts
(which inevitably produce correlations) also increase
reliability. This is precisely what we found. Spike trains
with many bursts (high burst fractions) had much less
total entropy compared to their capacities than did spike
trains with few bursts (Figure 3F). Bursty spike strains
also tended toward lower noise entropy (Figure 3G).
This occurs partly because the spike rate during a burst
approaches the refractory period; inter-spike intervals
are thus regularized, and the spike train’s variability is
reduced [15].
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Table 1. Spike Train Statistics Averaged over All Natural Stimuli

Cell Type Burst Fraction

Peak Spike

Rate (Hz) Firing Fraction

Mean Spike

Rate (Hz) Jitter (ms)

Brisk-transient (n = 41) 0.26 6 0.12 171 6 71 0.22 6 0.18 8 6 5 15 6 7

ON brisk-transient (n = 9) 0.27 6 0.12 157 6 77 0.33 6 0.24 10 6 6 19 6 10

OFF brisk-transient (n = 32) 0.26 6 0.12 175 6 70 0.19 6 0.14 7 6 4 14 6 6

Brisk-sustained (n = 65) 0.10 6 0.12 104 6 38 0.29 6 0.19 6 6 4 23 6 9

ON brisk-sustained (n = 27) 0.11 6 0.12 119 6 39 0.29 6 0.23 6 6 4 20 6 8

OFF brisk-sustained (n = 38) 0.08 6 0.12 93 6 34 0.30 6 0.19 6 6 5 26 6 9

ON DS (n = 15) 0.07 6 0.12 90 6 30 0.15 6 0.11 3 6 2 18 6 5

ON-OFF DS (n = 33) 0.08 6 0.12 117 6 36 0.17 6 0.15 4 6 3 17 6 7

Local-edge (n = 19) 0.07 6 0.12 74 6 36 0.25 6 0.14 4 6 3 40 6 24

Values are given as mean 6 SD.
Discussion

Any study employing natural images faces the concern
that only a few of all possible images can be tested.
Yet, because natural images share statistical regularities
(such as scale-invariant power spectra [4] and skewed
intensity distributions [16]), our stimuli resembled each
other much more than they resembled white noise (Fig-
ure 1). Indeed, the information rates measured here are
lower than those reported for white noise [2, 17]. This dif-
ference probably arises, at least in part, because white
noise lacks spatio-temporal correlations.

Another concern, especially for ganglion cells selec-
tive for ‘‘trigger features,’’ is that particular images might
fail to excite certain cell types. Yet, we found that all cells
responded to all stimuli over much of their dynamic
range. Feature-selective types such as the local-edge
cell, considered ‘‘sluggish’’ due to its lower peak and
average rates [18], fired up to 75 spikes $ s21 and aver-
aged 4 spikes $ s21 over the entire recording. This was
only 2-fold less than the peak and average responses
to artificial stimuli that are deliberately tuned to the trig-
ger features [2]. Far from being silent, the local-edge
type showed larger firing fractions than the less selec-
tive brisk-transient type (Figure S2). In general, re-
sponses differed more across types than across stimuli.

How Much Information Does the Eye Send the Brain?
The following calculation treats individual ganglion cells
as independent channels. Of course, the messages sent
by cells of the same and different types are not totally in-
dependent. Rather, they are partially correlated and the
correlations may be important [10]. To calculate the net
information conveyed about visual stimuli, one would
need to evaluate these correlations. Yet, a calculation
that excludes them is still useful because it: (i) allows ini-
tial estimates of basic parameters, such as power effi-
ciency (bits $ erg21); (ii) reveals how visual information
is distributed among the different neural components;
and (iii) provides a sense of scale for thinking about
the visual system as a whole.

The guinea pig optic nerve sends about 100,000 axons
centrally (our unpublished counts [19, 20]). Brisk-tran-
sient ganglion cells (ON + OFF) account for about 6%
(Kao and P.S., unpublished data; similar estimates are
found in cats [21] and primates [22]). The mean informa-
tion rate for a single brisk-transient cell is about 13 bits $
s21; thus, the brisk-transient component of the guinea
pig optic nerve sends approximately 78,000 bits $ s21.
OFF brisk-transient cells are twice as numerous as ON
cells in the guinea pig (Borghuis et al., personal commu-
nication; see also results for primates [23]). Because OFF
and ON transmit at equal rates, the OFF and ON cells
contribute, respectively, about 52,000 bits $ s21 and
26,000 bits $ s21. This fits the findings that natural con-
trast distributions are skewed toward negative contrasts
[24, 25] and dark regions in natural images contain more
information (Ratliff et al., personal communication).

Next we calculated the density for each cell type, from
its dendritic-field area and degree of overlap with its
neighbors (Table S2). The ratios of cell densities, plus
the fact that there are approximately 6,000 brisk-tran-
sient cells, yield numbers for the other types studied
here: approximately 24,000 brisk-sustained cells, ap-
proximately 7,000 ON direction-selective cells, approxi-
mately 12,000 ON-OFF direction-selective cells, and
approximately 20,000 local-edge cells. This leaves 30%
of optic axons to be apportioned among approximately
5 additional cell types [26]. Because these types are all
‘‘sluggish’’ [18], we assigned them the average informa-
tion rates for additional sluggish cells that were recorded
but not classified by type (9 bits $ s21; n = 18). The total
information rate for all components in the optic nerve
sums to approximately 875,000 bits $ s21 (Table S2).

Sluggish Cells Transmit Most Information

Most studies of ganglion-cell coding have focused on
the brisk types (X and Y in cats, M and P in primates).
The sluggish types, despite their similar S/N ratio [27]
and large contribution to the optic nerve [18], have
been largely ignored. Thus, it is startling to realize that
the famous brisk-transient cells contribute only 9% of
the information sent down the optic nerve, whereas
the more mysterious local-edge cells contribute nearly
twice as much! Overall, the non-brisk types contribute
64% of the information; and thus far outscore the brisk
types (Table S2).

Correlations in the messages sent by different cells will
affect the net information transmitted about visual stimuli
relative to the total information and might also affect the
proportion carried by each cell type. However, existing
measurements suggest comparable redundancies in the
responses of different cell classes, with a significant frac-
tion of the ‘‘shared information’’ arising from receptive-
field overlap [10, 28]. Thus, when the correlations are
accounted for, the sluggish category will probably carry
at least as much information as the brisk category—and
substantially more than the brisk-transient types.
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Figure 3. All Cell Types Transmitted Information with Similar Efficiency Because Total Entropy and Noise Entropy were Correlated by Spike Train

Bursts

Information rate (total entropy–noise entropy) was estimated by the direct method [43] with bin width (Dt) = 5 ms and spike word-lengths up to

eight digits. Bin width was set by the longest refractory period (5 ms for local-edge cells). Estimates of total and noise entropy were extrapolated

to infinite data size [44]. Estimated total and noise entropies were within 15% of that calculated for the longest word. A solid line shows the coding

capacity of a ganglion cell assuming noiseless firing with no spike correlations (C(R, Dt); see text). A dashed line shows the fraction of coding

capacity (3 that best fit information rate, total entropy, or noise entropy).

(A) Information rate was 26% of coding capacity (0.26 C(R,Dt)). K2 (percent of variation unexplained by coding capacity equation) was 19%.

(B) Total entropy was 91% of coding capacity. K2 = 4%.

(C) Noise entropy was 65% of coding capacity. K2 = 12%.

(D) A dashed line indicates the fraction of coding capacity per spike, (0.26 * C(R,Dt))/R. Lower rates carry more bits per spike.

(E) Line is least squares fit: slope = 1.2 (R2 = coefficient of determination). Noise entropy is strongly correlated with total entropy.

(F) Burst fraction is the fraction of spikes with interspike intervals <6 ms. Line is least squares fit: slope = 20.6. Total entropy as a fraction of

capacity decreased with burst fraction.

(G) Line is least squares fit; slope = 20.6. Noise entropy as a fraction of capacity decreased with burst fraction.
Why Are There Many Ganglion Cell Types?
Nerve fibers in the frog auditory nerve are reported to en-
code naturalistic stimuli with an efficiency sometimes
reaching approximately 90% of capacity (4-fold greater
than for white noise [29]). This differs strikingly from
optic fibers, where coding efficiency to naturalistic
stimuli is 3-fold worse than in auditory fibers and where
there is little (if any) enhancement compared to white
noise. Naturally one wonders why an optic fiber fares so
poorly in these comparisons. Our tentative answer bears
on the question of why the retina uses so many cell types.
Auditory fibers apparently achieve their high coding
efficiency via a ‘‘tuned’’ nonlinear filter that selectively
amplifies the anticipated signal [29]. A similar strategy
is apparently used by the mammalian rod bipolar cell
to encode single photon responses [30]. However, this
coding strategy, highly effective when the anticipated
signal is sparse and well defined, may serve poorly for
ganglion cells because the information of biological in-
terest in natural scenes is so varied that highly tuned,
nonlinear filters would either reject too much information
or require too many cell types.



How Much the Eye Tells the Brain
1433
Given the ganglion cell strategy of broad tuning and
equal coding efficiency, why does the retina not send
all visual information over one cell type with a high infor-
mation rate? This is possibly because the energetic cost
of signaling increases nonlinearly with temporal fre-
quency and information rate of individual axons [31–
34]. To illustrate, we compare the cost of transmitting
300 bits $ s21 over a bundle of independent axons with
mean spike rates of 4 Hz (local-edge cells), 8 Hz (brisk-
transient cells), and 40 Hz (hypothetical high-rate chan-
nel). Given approximately 30% efficiency, the 4 Hz
neuron sends 2.1 bits $ spike21, the 8 Hz neuron
sends 1.8 bits $ spike21, and the 40 Hz neuron sends
only 1.1 bits $ spike21 (from Equation 1). Thus, for
300 bits $ s21, the ‘‘local-edge’’ cable would use w140
spikes $ s21, the ‘‘brisk-transient’’ cable would use
w170 spikes $ s21, and the high-rate cable would use
approximately 270 spikes $ s21. Because the dominant
metabolic cost in neural signaling is associated with
spiking [35, 36], the cables with lower firing rates would
save considerable energy. Likewise, theoretical studies
predict that metabolic cost is minimized when signals
are distributed over many weakly active cells [37].

Of course, there are other reasons to use multiple cell
types [38]. Spatial acuity requires narrow-field cells with
a high sampling rate [39]. Because such a type must
necessarily distribute densely, its information rate
should be relatively low to reduce costs. On the other
hand, encoding of high stimulus velocities requires ex-
tended spatial summation and thus a broad-field cell—
plus the ability to transmit at high bit rates so as not to
lose the higher temporal frequencies. Such a cell type
must necessarily be expensive, but given the extended
dendritic field, this type can be sparse. Consequently
energetic considerations probably interact with other
constraints to set the number of cell types and a general
information rate of roughly 10 bits $ s21 and 2 bits $
spike21.

Supplemental Data

Supplemental Data include two figures and two tables and can be

found with this article online at http://www.current-biology.com/
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Figure S1. Cell Types Showed Distinct Spike-Triggered Averages and Autocorrelograms

For each type, the left panel shows superimposed spike-triggered averages to a flickering checkerboard stimulus (30 Hz) for 2–3 cells and the

right shows superimposed autocorrelograms for the same cells. Cells in each panel were from one preparation (with the exception of ON brisk-

transient cells which were taken from two different retinas). Local-edge cell types were confirmed by the cells’ virtual silence to a spatially uni-

form full-field stimulus (<2 spikes $ s21 [S1]) and directionally selective types were confirmed by the cells’ responses to moving gratings (direc-

tion-selective indices, i.e., (Rpref – Rnull) / (Rpref + Rnull) > 0.7). Of 107 cells, 18 belonged to the sluggish class yet could not be classified into distinct

types.
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Figure S2. Spike Statistics and Information Rate Differed Between Cell Types More Than Between Scenes

Cells recorded on a multi-electrode array (A) or singly with a loose patch (B) are rank ordered by the average for each stimulus. The rank order is

similar for all stimuli. The burst fraction was always highest for brisk-transient cells. The peak rate was always lowest for local-edge and highest

for brisk-transient. Firing fraction was highest for brisk-sustained. Mean rate was always lower for direction-selective and local-edge than brisk-

transient and brisk-sustained cells. Jitter was highest for local-edge and brisk-sustained cells. For all stimuli and cell types, efficiency was

approximately 0.30. For all stimuli, direction-selective and local-edge types sent fewer bits $ s21 than brisk-transient. Error bars show standard

error.
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Table S1. Entropy Estimates Averaged over All Natural Stimuli

Cell Type (Bits $ s21) (Bits $ Spk21)

Information

(% Capacity)

Total Entropy

(% Capacity)

Noise Entropy

(% Capacity)

Brisk-transient (n = 31) 13 6 6 1.9 6 0.5 29 6 5% 85 6 11% 56 6 14%

ON brisk-transient (n = 5) 13 6 4 1.7 6 0.5 27 6 5% 86 6 16% 58 6 20%

OFF brisk-transient (n = 26) 13 6 6 1.9 6 0.5 29 6 5% 85 6 10% 55 6 13%

Brisk-sustained (n = 45) 10 6 5 1.8 6 0.6 27 6 5% 89 6 9% 62 6 12%

ON brisk-sustained (n = 18) 9 6 3 1.8 6 0.5 27 6 6% 88 6 11% 61 6 14%

OFF brisk-sustained (n = 27) 10 6 6 1.9 6 0.7 27 6 5% 89 6 8% 63 6 11%

ON DS (n = 12) 6 6 3 2.2 6 0.6 28 6 4% 90 6 6% 62 6 8%

ON-OFF DS (n = 25) 8 6 4 2.2 6 0.6 29 6 6% 89 6 10% 60 6 12%

Local-edge (n = 14) 7 6 3 2.1 6 0.6 28 6 5% 96 6 5% 69 6 7%

Fewer cells appear in Table S1 than Table 1 because data were not adequate to estimate noise entropy for some cells. All values are given as

mean 6 SD.

Table S2. Information down the Optic Nerve

Cell Type

Dendritic

Area (mm2)

Coverage

Factor

Cell Density

(Cells/mm2)a # of Cells

Bits $ s21

Per Array

Information

Traffic (%)

Brisk-transient 0.20 3 30 6,000 78,000 9

Brisk-sustained 0.05 3 120 24,000 240,000 27

ON DS 0.13 1.5 36 7,000 42,000 5

ON-OFF DS 0.10 1.5 60 12,000 96,000 11

Local-edge 0.03 3 100 20,000 140,000 16

Sluggish (other)b 31,000 279,000 32

Total 100,000 875,000

Cell numbers were estimated from dendritic-field area and coverage factor. For cell types with Gaussian-like receptive-field centers, the den-

dritic tips of one cell reach the somas of its nearest neighbors [S2]; therefore, if one assumes hexagonal packing, these cells’ coverage factors

roughly equal p. For cell types with flat-weighted receptive field centers (directionally-selective cells), coverage factors equal approximately 1.5

[S2–S5]. We divided each type’s coverage factor by its dendritic field area (measured via dye injection) to yield cell density.
a Brisk-transient and brisk-sustained cells have two independent coverage factors, one for each polarity (ON and OFF). ON DS cells have three

independent coverage factors, and ON-OFF DS cells have four, one for each of four cardinal directions. Accordingly, we multiplied brisk-tran-

sient and brisk-sustained cell density by 2, ON DS cell density by 3, and ON-OFF DS cell density by 4.
b Approximately 31,000 cells are of other sluggish cell types not represented in this study. We assigned these cells the average information rate

for the sluggish cells we recorded but did not classify as to type.
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